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Abstract
Some universal amplitude ratios appropriate to the φ2,1 perturbation of the
c = 7

10 minimal field theory, the subleading magnetic perturbation of the
tricritical Ising model, are explicitly demonstrated in the dilute A3 model, in
regime 1.
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1. Introduction

While the idea that universality should be described by referring not only to critical exponents
but also to universal amplitude ratios is not new, it continues to attract interest. Universal
ratios are constructed in such a way as to cause cancellation of any metric factors associated
with the particular realization of a universality class being considered. Thus comparison of
these ratios, say from a field theory and a lattice model, or as measured in an experimental
system, increases our understanding of universality. Alternatively, they may be considered to
have predictive value.

Since the time of the comprehensive review of universal critical-point amplitude ratios
in [1], there have been important developments in integrable quantum field theory. Those most
pertinent to this paper are described below in section 3. Amplitude ratios for the universality
classes of the Ising model [2], the q-state Potts model [3] and the tricritical Ising model [4, 5]
have recently been constructed using field theoretic approaches. For the Ising model in a
magnetic field, transfer matrix results for a lattice Hamiltonian are compared with S-matrix
determination of universal amplitudes in [6].

Probably better recognized for its connection to the Ising model in a magnetic field, in
this short paper the dilute A model [7] is discussed in relation to the subleading magnetic
perturbation of the tricritical Ising model. That model is introduced in section 2 and some
quantum field theory results applying to it are outlined in section 3. In section 4 the dilute
A3 model, and some results for it, are described; it is shown to be a solvable lattice model
realization of the φ2,1 perturbation of M(4, 5). Motivated by [5], universal amplitude ratios
are constructed in section 5. These are found to be in perfect agreement with results from
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quantum field theory, which have appeared since the original solution of the dilute A model
in [8]. A brief discussion concludes the paper.

2. The tricritical Ising model

The tricritical Ising model corresponds to the minimal unitary conformal field theory M(4, 5)
with central charge c = 7

10 and its critical exponents are related to the conformal weights

�(5)
r,s = (5r − 4s)2 − 1

80
1 � r � 3 1 � s � 4. (1)

One lattice realization of this model is the Blume–Capel model [9], a spin-1 generalization
of the Ising model with vacancies favoured by a chemical potential µ. The Hamiltonian can
be written as

HBC = −J
∑
〈i,j〉

sisj − H

N∑
i=1

si + µ

N∑
i=1

(si)
2 (2)

where J is the nearest-neighbour coupling and H is an external magnetic field. The lattice
variable may be thought of as

si = σivi where σi = ±1 vi = 0, 1. (3)

The spin is σi and the occupancy (or vacancy) is expressed by vi . The model further admits
a subleading or staggered magnetic field, in which case it is more properly called the Blume–
Emery–Griffiths model:

HBEG = HBC − H3

∑
〈i,j〉

vivj (σi + σj ). (4)

The staggered field favours aligned spins on neighbouring sites. The phase diagram of this
model is like that of He3–He4 mixtures shown in [10]. The features of interest for this paper
are its wings of two-phase coexistence, on one of which the phases are si = 0 and 1, and on
the other si = 0 and −1. The subleading magnetic perturbation of the tricritical Ising model
gives access to a one-dimensional section of the full three-dimensional two-phase coexistence
manifold [11].

3. The subleading magnetic perturbation

Two remarkable advances in quantum field theory should be mentioned in the context of
the tricritical Ising model. Zamolodchikov showed that the minimal conformal field theories
M(p, p′) admit integrable perturbations by one of the operators φ1,2, φ1,3, φ1,5 and φ2,1, if
they are relevant [12,13]. It was further established, using the connection of the quantum field
theories to scattering theory, that the minimal unitary theories M(p, p + 1) for p = 3, 4, 5
perturbed by φ1,2 correspond to the exceptional E6, E7 and E8 Toda field theories [13, 14].

An important study of the mass spectra and phase diagrams of the four relevant
perturbations of the tricritical Ising model was undertaken in [11] using the truncated conformal
space approach. The two thermal perturbations are φ1,2 (leading) and φ1,3 (which is related to
the chemical potential µ in (2)). Interestingly, the ‘usual’ magnetic field H in (2) corresponds
to the perturbation φ2,2 of M(4, 5) which is relevant but not integrable, while the staggered
magnetic field in (4) corresponds to the integrable perturbation φ2,1, though it is not realizable
in a laboratory [10]. It is conceptually and notationally convenient [11] to number the fields
according to Landau–Ginzburg �6 formulation, from most relevant (ϕ1) to least relevant (ϕ4)
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Table 1. The four perturbations of the tricritical Ising model.

Field Perturbation Weight Lattice model

ϕ1 leading magnetic φ2,2
3

80 Not integrable

ϕ2 leading thermal φ1,2
1

10 Dilute A4, regime 2

ϕ3 subleading magnetic φ2,1
7

16 Dilute A3, regime 1

ϕ4 subleading thermal φ1,3
3
5 ABF A4, regime III

on the basis of the associated conformal weights (1). Table 1 summarizes this and what is to
follow about the manifestations of these four perturbations.

The S-matrix for the subleading magnetic perturbation in particular was studied in [15,16],
and using the thermodynamic Bethe ansatz in [17]. Mass spectra in general are exactly related
to bulk energies and coupling constants of the appropriate perturbations in [18]. Degeneracy
in the spectrum for φ2,1 means that only one distinct mass value emerges.

Other results for the φ2,1 perturbation of M(p, p + 1) can also be found among general
discussions of integrable perturbed quantum field theories. In particular, expressions for one-
point correlation functions or vacuum expectation values of the local fields are proposed in [19].
Explicit values are given for the tricritical Ising model, and compared with numerical results
of [20]. Predictably, two degenerate but asymmetric ground states are identified for each sign
of the coupling constant.

Universal amplitude ratios for the relevant perturbations of the tricritical Ising model have
recently been constructed [4,5], by collecting together information from the approaches above,
as well as numerical results. These ratios involve the amplitudes of the correlation lengths ξi
and of the free energy fi (where the subscript i = 1, . . . , 4 denotes the field taking the model
off-critical) but are independent of the coupling constants gi and hence of any nonuniversal
metric factors. Further, they involve the amplitudes of the vacuum expectations of the local
fields

〈ϕj 〉i ≡ Bji g
�j /(1−�i)

i (5)

as well as generalized susceptibilities. Some of these ratios should be observable both in
real-world representations of this universality class, and the related solvable lattice models,
provided the physical quantities required can be measured or constructed.

Each of the three integrable perturbations of the tricritical Ising model has been identified
with a particular solvable lattice model in its massive, scaling limit. The elliptic nome of the
A4 ABF model [21, 22] in regime III corresponds to the coupling constant of the subleading
thermal perturbation, φ1,3. Smirnov [23] conjectured that lattice models for φ1,2 and φ2,1

would be based on RSOS restriction of the Izergin–Korepin [24] A(2)
2 R-matrix. The dilute

A model [7] is a hierarchy of such models, and provides the two remaining cases. Of these,
most attention has focused on the dilute A4 model in regime 2, which is in the universality class
of the φ1,2 perturbation, to elucidate the hidden E7 structure [25–28]. A detailed description
of how the dilute A3 model in regime 1 realizes the φ2,1 perturbation of the tricritical Ising
model will follow in section 4. Delfino [29] gives an interesting phase diagram concerning the
points of contact of the regimes of these three solvable models from a discussion of double
perturbations of the minimal unitary series by φ1,3 and one of φ1,2 or φ2,1.

4. The dilute A3 model in regime 1 as the tricritical Ising model

The dilute AL model [7] is a hierarchy of solvable restricted solid-on-solid models, defined on
the square lattice and labelled by the allowed number of heights, L. The adjacency condition
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of the model is that neighbouring sites of the lattice are either occupied by the same height
or differ by one. The face weights of the model are parametrized using elliptic functions. It
is solvable in four off-critical regimes, generated by the elliptic nome p and the value of the
crossing parameter, which in regime1 1 is

λ = π

4

(
L

L + 1

)
while the central charge, known from equivalence with the O(n) model, for regime 1 is

c = 1 − 6

(L + 2)(L + 1)
.

For odd L the elliptic nome breaks the Z2 symmetry of the underlying adjacency diagram
and is thus magnetic-field-like; changing the sign ofp causes height relabelling a → L+1−a,
where a = 1, . . . , L. It is sometimes necessary to distinguish between regime 1+ where p > 0
and regime 1− where p < 0.

The singular part of the free energy of the dilute AL model in regime 1 to leading order
as the nome p → 0 behaves as

fs ∼ AL p
4
3 (

L+1
L )

which follows from the partition function-per-site calculated either using the inversion relation
method [8] or the largest eigenvalue of the row-to-row transfer matrix [30]. For odd L this
gave [8] the critical exponent δ = 3L/(L + 4) and the associated scaling dimension

�p = 1

1 + δ
= L + 4

4(L + 1)
= �

(L+2)
2,1 (6)

so that in regime 1 the nome generates perturbation of the unitary minimal model M(L+1, L+2)
by the operator φ2,1. This is the basis of the earlier assertion that for L = 3 the nome relates to
the subleading magnetic perturbation of the tricritical Ising model; or in field theoretic notation,
the coupling constant g3 of ϕ3; or in the language of the lattice Hamiltonian, the staggered
magnetic field.

Correspondence can also be drawn at the level of details of the ground states. In regime 1
the A3 model has two ferromagnetic ground states in the ordered (|p| → 1) limit, for each sign
of the elliptic nome [8]. For one sign of p all sites of the lattice are occupied either by height 1,
or by height 2. Under the field reversal noted before, the ground states for the other sign of
p consist of all lattice sites being occupied by height 3 or by height 2. The straightforward
identification of the dilute A3 model height variable ai at site i with the spin and vacancy
variables (3) via

ai = 2 + σivi

maps the ground states to those described in section 2. The adjacency condition of the dilute
A3 model then corresponds to each occupied site having as its neighbour either an empty site,
or an aligned spin.

Local height probabilities P bc(a), expressing the probability that a site deep in the lattice
is occupied by height a when the model is in the phase labelled by (b, c), were calculated
for the dilute AL model (L odd) in [8], using the corner transfer matrix technique [31]. This
calculation involves considering a series of finite square lattices with boundary sites set to the
configurations (b, c), solving recurrence relations and then taking the lattice size to infinity.
The polynomials generated in this process for general L in regime 1 have found application

1 This regime labelling differs from [7] but is followed in [8] and all subsequent papers.
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as the required finitizations of the bosonic side of Rogers–Ramanujan-type identities, termed
φ2,1 polynomial identities [32].

Following Huse [22], generalized order parameters

Rbc
k =

L∑
a=1

sin((k + 1)aπ/(L + 1))

sin(aπ/(L + 1))
P bc(a) k = 0, . . . , L − 1

were defined and the leading-order behaviour determined [8]. For L = 3 in regime 1+, where
the ferromagnetic ground states have c = b,

Rbb
k ∼ p[(k+1)2−1]/45 sin((k + 1)πs/5)/ sin(πs/5) s =

{
1 b = 1

3 b = 2.
(7)

The associated scaling dimensions were determined using (1), (5) and (6) to be

�k = �
(5)
k+1,k+1 k = 1, 2.

Using the property�(5)
r,s = �

(5)
4−r,5−s ,R

bb
1 is identified with the expectation value of the operator

φ2,2 (or ϕ1) and similarly, Rbb
2 with φ1,2 (or ϕ2), in both of the two phases labelled by b. (Fairly

trivially, Rbb
0 = 1 by definition, and corresponds to φ1,1 or the identity operator.)

The variable s introduced in (7) depends only on the height b, and provides the
identification of the lattice model ground states and the phase labelling in [19] required if
we are to proceed to compare universal quantities. In the field theory context the phases are
|0s〉 with s = 2, 4 for positive coupling constant, and s = 1, 3 for negative coupling constant.
(For reasons to do with arbitrary choices made in the Boltzmann weights of the dilute A model
as set up in [8] the elliptic nome is actually −g3, so that regime 1+ corresponds to g3 < 0.
Applying the appropriate height reversal to the working leading to (7) one obtains s = 2, 4
in regime 1−. Since the perturbation is magnetic, the ratios to be considered in section 5 are
in fact unchanged by this rather technical detail. A similar observation is made for dilute A4

in [26, 28], where p < 0 is noted to be the high-temperature regime.)

5. Universal amplitude ratios

Knowing just 〈ϕj 〉3, f3 and ξ3 (see (11) below) does not permit construction of many of the
various amplitude ratios proposed in [5]. However, we can consider the ratio of 〈ϕj 〉3 in
one phase of the tricritical Ising model (say s = −1) with the expectation value of the same
operator in the coexisting phase (s = 0), for j = 1, 2, 3:

〈ϕj 〉(−)
3

〈ϕj 〉(0)3

= B
(−)
j3

B
(0)
j3

. (8)

From (5), these ratios are pure numbers independent of the nome or g3, and hence of any
associated microscopic scaling factors of the solvable lattice realization of the tricritical Ising
model, or of the field theory considered in [19].

First, 〈ϕ3〉3 = − ∂f3

∂g3
, and since the amplitude of the free energy expression does not

depend on the sign of the nome or on the phase, B(−)
33 /B

(0)
33 = 1, in agreement with the

identical numerical values given in table XVII of [5].
From (7) we find

B
(−)
j3

B
(0)
j3

= R11
j

R22
j

= 1 +
√

5

1 − √
5

j = 1, 2. (9)
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In the expressions for 〈0s |φl,k|0s〉 given in [19] the only s- or phase-dependent factor is

sin(πs|5l − 4k|/5)/sin(πs/5) (10)

which should be compared with the coefficients in (7). The amplitude ratios constructed from
the field theory are then in perfect accord with (9):

〈01|φ1,2|01〉
〈03|φ1,2|03〉 = 〈01|φ2,2|01〉

〈03|φ2,2|03〉 = 1 +
√

5

1 − √
5
.

One further universal amplitude can be calculated. The single correlation length of
the model in regime 1 (corresponding to one distinct mass as mentioned in section 3) was
calculated from the leading transfer matrix eigenvalue excitation, constructed by Baxter’s
exact perturbative method [31] using the Bethe ansatz equations [33], in [30, 34]. From the
general expression for allL in terms of standard elliptic theta functions (following the approach
taken in [35])

ξ−1 = 2 log

[
ϑ4(

π
12 , p

π/6λ)

ϑ4(
5π
12 , p

π/6λ)

]
= 8

∞∑
n=1

1

n

(pπ/6λ)n

1 − (pπ/6λ)2n
sin

(nπ
2

)
sin

(nπ
3

)
(11)

we now obtain the coefficient of the leading-order term for L = 3 to be

ξ−1 ∼ 4
√

3p8/9 + O((p8/9)3).

Combining this with the free energy amplitude A3 = 2
√

3/ cos(4π/9) gives the tricritical
Ising subleading magnetic amplitude

fsξ
2 = 1

8
√

3 cos( 4π
9 )

(12)

in agreement with the expression for it in [18]. This universal quantity is related to R3
ξ of [5].

6. Discussion

Only some of the objects used in constructing universal amplitude ratios in [5] can be calculated
in the dilute A3 ‘version’ of the tricritical Ising model considered in this paper. To utilize what is
available, a different universal quantity (8) has been considered. Thus equations (9) and (12) go
some way towards answering a challenge put out in [4], to independently determine universal
amplitude ratios for the tricritical Ising model from a solvable lattice formulation. One barrier
to constructing similar ratios to (8) for the dilute A4 model in regime 2, which corresponds
to the leading thermal perturbation, is that local height probabilities for L even have not yet
been calculated (in any regime). However, amplitudes akin to (12) are discussed for dilute A4

in regime 2 in [28], where the conjectured [26] E7 mass ratios are confirmed. There are more
general observations to be made along the lines of this paper, and it is intended to report on
them in the near future.
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